1. Гуру ПНР : Сайт для наладчиков 
  2. Список рубрик 
  3. Защита релейная и микропроцессорная 
02 2020

Токовые цепи

Что такое токовая цепь?

Токовая цепь - это вторичная цепь, предназначенная для измерения тока, протекающего в первичной цепи. Традиционно токовая цепь состоит из измерительного трансформатора тока, ко вторичным обмоткам которого подключены приборы защиты и индикации. Иногда токовые цепи служат еще и источником оперативного тока для питания схемы релейной защиты.

Трансформаторы тока

Трансформатор тока служит для преобразования тока, протекающего в первичной цепи к унифицированному сигналу (как правило, тоже току) во вторичной цепи. Отношение первичного тока (I1) ко вторичному (I2) - есть коэффициент трансформации (kТТ):

I1/I2=kТТ

Для стандартизации изготовления по ГОСТ 7746-2001 приняты ряды для трансформаторов тока:

Идеальная работа трансформатора тока - когда его вторичная обмотка замкнута накоротко, т. е. сопротивление на выводах обмотки приближается к нулю. На практике во вторичной обмотке присутствуют хоть и низкоомные, но всё же имеющие сопротивление катушки реле, обмотки измерительных преобразователей или источников оперативного тока. И, естественно, сами провода. Все они подключены последовательно, значит полное сопротивление на вторичной обмотке складывается из всех сопротивлений включенных в неё устройств. Оказывается, чем больше это сопротивление, тем хуже точность измерения у трансформатора тока.

Распределение нагрузки во вторичной цепи

Номинальные параметры приведены ниже, но не всё из них указывают на табличках трансформаторов тока:

Обычная табличка трансформатора тока

По ГОСТ 7746-2015 вывода трансформатора тока обозначаются буквами:

В отличие от первичной обмотки, которая может быть составной, но всё равно является одной цепью, вторичных обмоток может быть несколько. Мало того, вторичные обмотки могут иметь ответвления. С учетом этого их обозначают так:

Обозначение выводов трансформаторов тока

Обозначение выводов трансформаторов тока

Поясню еще, что такое "начало" и "конец" у обмотки на всякий случай. Это, разумеется условные понятия. Но, как мы увидим дальше, пренебрегать ими никак нельзя. В этом должен быть порядок. Итак, представим ток в виде потока электронов. В какой-то момент поток течет от Л1 к Л2 и наводит во вторичной обмотке другой поток поменьше. Этот поток будет выходить из И1 и стремиться через нагрузку к И2. Еще раз: в Л1 - входит, из И1 - выходит. Такое направление токов называется - "в фазе", а полярность выводов (Л1 и И1) - совпадает. Если в Л1 входит и в И1 входит, то это противофаза, а полярность выводов считается противоположной. В следующий момент поток электронов меняется на обратный и течет от Л2 к Л1, и из Л1 - выходит, а в И1 входит вторичный ток. И так 50 раз за секунду при частоте 50 Гц.

Пояснение понятия начало обмотки и конец обмотки

Схемы токовых цепей

До этого мы рассматривали токовую цепь применительно к одной фазе. На практике это используется крайне редко, потому что даже если взять отдельно три однофазные токовые цепи, они не будут обладать теми свойствами, которыми обладают традиционные схемы типа "звезда", "неполная звезда", "треугольник" и прочие.

Существует множество схем токовых цепей. Каждая из них имеет свои свойства и применима только в определенных электроустановках.

Схема полной звезды

Распространенная схема: трансформаторы тока устанавливаются во всех фазах. В каждой фазе устанавливается защитное реле. А замыкается цепь через один общий провод, называемый "нулевым".

Схема соединения обмоток в полную звезду

Схема обладает следующими свойствами:

Подводя итог перечисленным свойствам, можно сделать вывод, что схема полной звезды реагирует на любые виды замыканий: при любых междуфазных замыканиях срабатывают защитные устройства в фазных проводах, а при однофазном замыкании - защитное устройство в нулевом проводе.

Схема неполной звезды

Более распространенная схема, чем предыдущая. Отличается от полной звезды отсутствием трансформатора тока цепи одной из фаз. Как правило, в фазе B.

Схема соединения токовых цепей в неполную звезду

Схема обладает свойствами:

Недостатком этой схемы - реакция не на все виды однофазного короткого замыкания. Поэтому такие схемы применяются в сетях с большим сопротивлением при замыканиях на землю, т. е. в сетях 6 - 35 кВ.

Соединение трансформаторов тока в треугольник

Вторичные обмотки трансформаторов тока соединяются последовательно: начало ТТ фазы A - с концом ТТ фазы B, начало ТТ фазы B - с концом фазы C, начало ТТ фазы C - с концом ТТ фазы А. Обмотки защитного устройства подключают к выводам И1 фаз A, B и C и соединяются в звезду.

Схема соединения токовых цепей в треугольник

Рассмотрим, какими свойствами обладает рассматриваемая схема:

Данная схема реагирует на все виды коротких замыканий, кроме замыканий на землю. Увеличивает чувствительность защиты за счет увеличения тока в реле до 2 крат.


Вид КЗПоврежденные фазыТоки в фазахТоки в реле
IIIIII
Двухфазное А, В Ib=-Ia
Ic=0
2Ia Ib -Ia
В, C Ic=-Ib
Ia=0
-Ib 2Ib -Ic
C, A Ia=-Ic
Ib=0
Ia -Ic 2Ic
Однофазное А Ia=IКЗ
Ib и Iс = 0
Ia 0 -Ia
В Ib=IКЗ
Ia и Iс = 0
-Ib Ib 0
C Ic=IКЗ
Ia и Ib = 0
0 -Ic Ic

Схема соединения с двумя трансформаторами, включенными на разность тока и одним реле (схема "восьмерки")

Вторичные обмотки двух трансформаторов тока соединяются последовательно: начало ТТ фазы A - с концом ТТ фазы C, начало ТТ фазы C - с концом фазы A. Обмотка защитного устройства подключают к выводам И1 фаз A и C.

Соединение токовых цепей в восьмерку

Рассмотрим свойства данной схемы:

Рассматриваемая схема применима только для защиты от междуфазных замыканий.

Методы проверки токовых цепей

Проверка токовых цепей только лишь прозвонкой малоэффективна. Причина тому - их низкое сопротивление и важность в последовательности соединения проводников. Поэтому при прозвонке требуется разборка всех соединений, что не всегда целесообразно, так как есть более эффективные методы проверки.

Проверка коэффициента трансформации и полярности выводов

Это важный этап проверки токовых цепей. Трансформаторы тока - отправная точка (источник), поэтому о них должно быть известно всё: коэффициент трансформации и полярность выводов.

Проверка коэффициента трансформации производится довольно просто: на вывода Л1-Л2 первичной обмотки подается переменный ток, значение I1 и направление которого известно. Во вторичных выводах И1-И2 замеряется трансформированный ток I2. При этом все вторичные обмотки, в которых измерение не производится должны быть закорочены. Коэффициент трансформации будет равен:

kТТ = I1/I2

Значение этого коэффициента не должно отличаться от паспортного более чем на 2%. Если проявить смекалку при наличии вольтамперфазометра (ВАФ), то можно сразу посмотреть и полярность выводов. Правда, для этого нужен такой ВАФ, который умеет измерять углы между двумя токами.

Определение коэффициента трансформации прямым измерением токов

Для этого опорные клещи (относительно которых будет измеряться вторичный ток) цепляют на первичный провод таким образом, чтобы знак начала на них был обращен к началу источнику тока. Измерительные клещи нужно зацепить на провод (или перемычку), подключенный к выводам И1-И2 так, чтобы знак их начала был обращен к И1. Если вывода совпадают, то угол между ними будет не более 3°.

Если по каким-то причинам невозможно применение ВАФа (например, первичный провод источника слишком большого сечения или ВАФ не измеряет угол между током и током), то полярность выводов можно проверить методом гальванометра.

Проверка полярности обмоток с помощью гальванометра

Ко вторичной обмотке подключается гальванометр. Для этих целей вполне подойдет даже мультиметр без автоматического определения пределов. Например, Mastech MY-64. Его измерительный щуп (V) подключается к И1, а общий (COM) - к И2. С помощью батарейки (лучше аккумулятора) с нагрузкой в цепи в виде лампы или резистора подается постоянный ток в первичную обмотку таким образом, чтобы "плюс" источника коммутировался бы на Л1, а "минус" - на Л2. Положительное отклонение стрелки гальванометра или положительное значение напряжения на мультиметре при замыкании ключа свидетельствует о совпадении направления выводов Л1 и И1.

Ретом-21, например, позволяет напрямую замерить угол между первичным током и вторичным. Для этого в разрыв провода вторичного тока нужно подключить вход РА так, чтобы И1 приходил в начало РА, а И2 - в конец. Начало источника I3 или I5, обозначенное знаком (*) подключается к Л1. В меню источника Ретом-21 настраивается мультиметр таким образом, чтобы опора измерения фазы (угла) была I3 или I5, а измерение - по PA.

Измерение полярности при помощи Ретом-21

Если коэффициент трансформации небольшой, нет возможности замерить угол, но есть токовые клещи, то можно воспользоваться приведенной схемой измерения. Она годится лишь для оценочной проверки полярности выводов. По ней нельзя судить о угловой погрешности трансформатора тока.

Проверка полярности выводов одними клещами

В окно клещей от трансформатора тока пропускается сразу два провода - первичный и вторичный. Делается два опыта: с разным положением вторичного провода в окне. В одном случае клещи покажут ток больше - значит направления токов совпадает, а в другом - меньше, значит токи в противофазе.

И еще. Если и последний способ не подходит для проверки полярности, то ниже, в разделе, описывающем проверку циркуляции токов, косвенно объясняется, как можно проверить правильность полярности трансформаторов тока.

Снятие вольт-амперной характеристики (ВАХ).

Для чего? Это нужно для понимания наличия короткозамкнутых витков во вторичной обмотке трансформатора. Когда во вторичной обмотке есть короткозамкнутые витки, то её сопротивление падает, следовательно вторичный ток циркулирует по обводным цепям. К тому же, как правило, происходит и изменение коэффициента трансформации трансформатора тока. Это начинает сказываться на надежности защиты в целом и может привести к отказам.

Каковы критерии исправности/неисправности трансформатора тока по ВАХ? Существует понятие точки намагничивания. Это значение тока, потребляемого обмоткой IНАМ, при котором происходит перегиб характеристики ВАХ. Точка отделяет зону, когда напряжение растет круче, чем ток от зоны, когда ток растет круче, чем напряжение. Ток намагничивания - паспортная величина. Иногда производитель указывает, какое напряжение должно быть при токе намагничивания. Но бывает и так, что ни напряжения, ни тока намагничивания в паспорте нет. В любом случае хорошим тоном считается снимать характеристику ВАХ полностью от 0 до 5 А, а не только в одной указанной точке. Снятая характеристика при ПНР будет эталонной для последующих проверок в эксплуатации.

Опять же таки, нет четкого определения, что несоответствие точки намагничивания на столько-то процентов есть браковочный показатель. Как правило, точка намагничивания и не будет совпадать с паспортом в каком-то приближении. Причина этому невозможность обеспечить полностью синусоидальный ток при проверке и использование различных приборов в эксплуатации и при наладке. Поэтому из практического смысла ВАХ рекомендуется снимать во всем диапазоне. Чем больше точек, тем лучше. Затем полученная характеристика сравнивается с такими же характеристиками для однотипных трансформаторов тока или с полученной при наладке.

ВАХ обычного трансформатора

Вольт-амперная характеристика снимается возбуждением трансформатора тока со стороны вторичной обмотки. Все остальные обмотки должны быть разомкнуты. В обмотку подается и плавно увеличивается напряжение. Во время увеличения напряжения, ориентируясь на значения тока, снимаются точки (IНАМ; UНАМ) в количестве - чем больше, тем лучше. Шаг точек выбирается произвольно. Рекомендуется до точки намагничивания снимать мелкими шагами (по 50, а то и 10 мА). После - увеличивая от 500 мА до 1 А. Затем по ним строится сама характеристика.

Важно знать, что после достижения последней точки нельзя просто так отключать источник. Необходимо произвести размагничивание путем плавного уменьшения подаваемого напряжения до нуля. Затем, отключить источник с паузой в несколько секунд.

На рисунке ниже показаны ВАХ исправного трансформатора тока и имеющего витковые замыкания во вторичной обмотке. Так же показаны ВАХ обмоток класса точности 10Р и 0,5. Как видно, обмотка используемая для защит (10Р) имеет ВАХ более высокую, чем обмотка используемая для измерения, хотя они могут располагаться на одном магнитопроводе трансформатора.

ВАХ различных обмоток и ВАХ ТТ с витковым замыканием

Для трансформаторов тока нулевой последовательности вид ВАХ не регламентируется. Это связано с принципом его работы. Он должен реагировать на гармонические составляющие отличные от основной частоты. Поэтому ВАХ таких трансформаторов снимается при наладке и используется как образец в эксплуатации. Форма этой ВАХ может быть как линейной, так и нелинейной.

Проверка циркуляции токов в полной схеме

Обязательный этап проверки токовых цепей - проверка циркуляции. Косвенно при циркуляции проверяется и полярность подключения вторичных обмоток. Все вторичные токовые цепи собираются по рабочей схеме. На данном этапе должно быть четкое понимание, какой коэффициент трансформации у трансформаторов тока и каково будет направление энергии через проверяемое присоединение. Положительное направление энергии считается от шин в линию. То есть, нужно четко понимать, куда смотрит вывод трансформатора тока Л1: в шины или в линию.

Проверка производится в несколько шагов. Первый шаг: в первичную обмотку каждого отдельно трансформатора тока подается ток заведомо известной величины, например, 60 А. При коэффициенте трансформации 300/5 во вторичной обмотке будет протекать ток 1 А. Нужно проверить, что ток протекает только в проводе возбуждаемой фазы и в нуле. И везде он близок к 1 А. В проводах других фаз никаких токов быть не должно. Если это не так, значит имеются обводные цепи и их нужно найти и устранить.

Затем эта процедура повторяется для всех остальных трансформаторов тока. В том числе и для трансформаторов тока нулевой последовательности.

Пофазная проверка циркуляции токов

Второй шаг: сборка схемы для проверки правильности подключения к полярным выводам трансформаторов. В первичную схему устанавливаются перемычки таким образом, чтобы при питании от источника тока, в нулевом проводе вторичных обмоток ток суммировался. То есть последовательно соединяются первичные обмотки: Л2 фазы "А" c Л1 фазы "B", Л2 фазы "B" с Л1 фазы "C". Ток подводится к Л1 фазы "A" и Л2 фазы "C".

Проверка правильности подключения токовых цепей в сборе

Так как ток имеет одно направление во всех трансформаторах тока, то во всех фазных проводниках он будет равен 1 А при первичном 60 А, в нулевом - около 3 А. Или, если в фазе "B" отсутствует трансформатор тока - 2 А. Если это не так, значит неверно подключены провода токовых цепей к выводам трансформатора тока. Т. е. где-то вместо И1 подключено к И2 или наоборот.

Проверка сопротивления изоляции

Перед проверкой сопротивления изоляции токовых цепей необходимо отсоединить проводник заземления подключенный ко вторичным обмоткам. Сопротивление изоляции проверяется повышенным напряжением 1000 В промышленной частоты в течение 1 мин. Критерием исправности изоляции является отсутствие пробоя или увеличения величины тока утечки при испытаниях.

Затем, производится проверка относительно корпуса металлоконструкции мегаомметром на напряжение 1000 В. Сопротивление должно быть не ниже 1 МОм.

Проверка нагрузки на выводах трансформаторов тока

Вторичные обмотки трансформатора тока работают в режиме короткого замыкания в идеальном случае. Однако, провода, устройства защиты и измерения, включенные во вторичные цепи последовательно, могут создавать ощутимое сопротивление (нагрузку) на трансформатор тока. Следствием этого может быть выход трансформатора из класса точности, что в свою очередь на уставках с большим током приведет к отказу защиты. Проще говоря, чтобы обеспечить гарантированную погрешность работы трансформатора в 10% для обмоток 10Р, сопротивление нагрузки не должно превышать номинального значения. При пусконаладочных работах этот параметр нужно проверять обязательно. Алгоритм проверки описан далее.

Шаг 1: Определение фактической вторичной нагрузки трансформатора тока Z2ФАКТ:

Схема измерения нагрузки трансформатора тока

При полностью собранных вторичных цепях производится измерение нагрузки. Для этого в первичную обмотку подается ток не менее 10% от номинала. На зажимах вторичной обмотки 1И-2И измеряется напряжение (U) и протекающий в цепи ток (I). Фактическая нагрузка обмотки определяется по формуле:

Z2ФАКТ = U / I

Шаг 2: Определение коэффициента предельной кратности при Z2ФАКТ:

Коэффициент предельной кратности выбирается по мощности вторичной нагрузки из кривой предельной кратности трансформатора тока. Находим мощность:

S2ФАКТ = I22НОМ·Z2ФАКТ

Где:

По кривой предельной кратности находим коэффициент К. Эта кривая приводится в руководстве по эксплуатации на конкретный трансформатор тока. Откладывая по оси абсцисс полученную мощность S2ФАКТ, находим К.

Пример кривых предельной кратности

Шаг 3: Определяем ток насыщения от первичной обмотки I1НАС:

I1НАС = K·I1НОМ

Где:

Шаг 4: Определение допустимого вторичного тока по кривым от фактической нагрузки

Из расчетов уставок защит проекта нужно взять самый максимальный первичный ток короткого замыкания (I1) в зоне защиты присоединения. Так правило этот ток находится в уставках на токовую отсечку. Нам понадобится кривая зависимости токов вторичной обмотки от токов короткого замыкания в первичной обмотке. Эта кривая точно так же приводится в руководстве по эксплуатации на трансформатор тока.

Кривые зависимости тока вторичной обмотки от токов замыкания в первичной обмотке

Откладывая по оси абсцисс отношение I1/I1НАС определяем по оси ординат отношение I2/I2НАС. Здесь требуется знать еще и Cos φ вторичной нагрузки трансформатора тока. Если определить его сложно, то нужно использовать наихудший вариант - Cos φ=0,8.

Тогда допустимый вторичный ток для короткого замыкания в первичной цепи присоединения находится из выражения:

I2ДОП = I2НОМ·K·K2ДОП

Где:

Шаг 5: Сравнение полученного результата

Для того, чтобы защита отработала при возникновении короткого замыкания на проверяемом присоединении, необходимо, чтобы ток самой большой уставки (токовой отсечки) был меньше, чем допустимый вторичный ток, то есть:

I2ТО ≤ I2ДОП

Если это не так, то возможные меры - увеличение сечения проводов, выбор трансформатора тока с большей номинальной нагрузкой или с большим коэффициентом трансформации.

Меры безопасности при проверке токовых цепей

Перед любыми переключениями во вторичных цепях следует убедиться, что питание установки отключено и ток в первичной цепи проверяемого трансформатора отсутствует. Отключение питания проводят при помощи коммутационного устройства, расположенного до регулятора напряжения или непосредственно после него.

При работе с одной из обмоток трансформаторов тока, имеющих две и более вторичных обмотки, каждая из которых размещена на отдельном магнитопроводе, другие вторичные обмотки должны быть замкнуты на нагрузку, не превышающую номинального значения, или накоротко.

Поделитесь в соцсетях:


 

© Guru-PNR.ru

Материалы данного сайта предназначены для специалистов в области пусконаладочных работ.

Использование материалов данного сайта разрешается с указанием ссылки на источник.

РАССКАЖИТЕ О НАС В СОЦСЕТЯХ